EXTENDED PREDICTOR-CORRECTOR METHODS FOR SOLVING FUZZY DIFFERENTIAL EQUATIONS UNDER GENERALIZED DIFFERENTIABILITY
نویسندگان
چکیده مقاله:
In this paper, the (m+1)-step Adams-Bashforth, Adams-Moulton, and Predictor-Correctormethods are used to solve rst-order linear fuzzy ordinary dierential equations. The conceptsof fuzzy interpolation and generalised strongly dierentiability are used, to obtaingeneral algorithms. Each of these algorithms has advantages over current methods. Moreover,for each algorithm a convergence formula can be obtained . The convergence of thesemethods is proven in detail. Finally, these methods are illustrated using example initial valueproblems.
منابع مشابه
extended predictor-corrector methods for solving fuzzy differential equations under generalized differentiability
in this paper, the (m+1)-step adams-bashforth, adams-moulton, and predictor-correctormethods are used to solve rst-order linear fuzzy ordinary dierential equations. the conceptsof fuzzy interpolation and generalised strongly dierentiability are used, to obtaingeneral algorithms. each of these algorithms has advantages over current methods. moreover,for each algorithm a convergence formula can b...
متن کاملImproved predictor-corrector method for solving fuzzy differential equations under generalized differentiability
In this paper, an improved predictor-corrector methods (IPC) to solve fuzzy differential equation under generalized differentiability are discussed. The methods proposed here are based on generalized characterization theorem. Using the Generalized Characterization we can translate a fuzzy differential equation into two ODE systems. Also, the convergence and stability of the proposed methods are...
متن کاملA Numerical Approach for Solving Forth Order Fuzzy Differential Equations Under Generalized Differentiability
In this paper a numerical method for solving forth order fuzzy dierentialequations under generalized differentiability is proposed. This method is basedon the interpolating a solution by piecewise polynomial of degree 8 in the rangeof solution . We investigate the existence and uniqueness of solutions. Finally anumerical example is presented to illustrate the accuracy of the new technique.
متن کاملGeneralized H-differentiability for solving second order linear fuzzy differential equations
In this paper, a new approach for solving the second order fuzzy differential equations (FDE) with fuzzy initial value, under strongly generalized H-differentiability is presented. Solving first order fuzzy differential equations by extending 1-cut solution of the original problem and solving fuzzy integro-differential equations has been investigated by some authors (see for example cite{darabi...
متن کاملNumerical solution of fuzzy differential equations under generalized differentiability by fuzzy neural network
In this paper, we interpret a fuzzy differential equation by using the strongly generalized differentiability concept. Utilizing the Generalized characterization Theorem. Then a novel hybrid method based on learning algorithm of fuzzy neural network for the solution of differential equation with fuzzy initial value is presented. Here neural network is considered as a part of large eld called ne...
متن کاملa numerical approach for solving forth order fuzzy differential equations under generalized differentiability
in this paper a numerical method for solving forth order fuzzy dierentialequations under generalized differentiability is proposed. this method is basedon the interpolating a solution by piecewise polynomial of degree 8 in the rangeof solution . we investigate the existence and uniqueness of solutions. finally anumerical example is presented to illustrate the accuracy of the new technique.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 5 شماره 2 (SPRING)
صفحات 149- 171
تاریخ انتشار 2015-03-21
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023